Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38175413

ABSTRACT

Recently, impressive developments in the field of nanotechnology have been achieved. The study aimed to synthetize zinc oxide nanoparticles (ZnONPs) from locally isolated terrestrial Bacillus paramycoides (MCCC 1A04098) bacteria and assess its role as antioxidant, antimicrobial, and anticancer agent. The antioxidant activity was done using the percentage of DPPH scavenging method. The antibacterial activity was evaluated against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Candida albicans. The anti-proliferation assay against hepatocellular carcinoma (HepG2) and human breast cancer (MCF-7) cell lines was estimated by neutral red assay. The apoptotic effect of ZnONP was measured by flow cytometry. The in vivo evaluation was carried out against hepatorenal injuries induced by carbon tetrachloride (CCl4) in rats comparing with silymarin as a reference drug. The oxidative stress markers, liver and kidney function enzyme indices, lipid profile, and the histological features of the liver and kidney were also examined. ZnONPs revealed antioxidant and antibacterial effects. It also exerted cytotoxic and apoptotic effect in a dose dependent manner without any toxicity on normal cell line. ZnONPs improved all the biochemical parameters under investigation to varying degrees, and the histological pictures of the liver and kidney confirmed the results. In conclusion, ZnONPs were successfully synthesized from the terrestrial Bacillus paramycoides and recorded in vitro antioxidant, anticancer, and antibacterial effects as well as in vivo anti-hepatorenal toxicity effects.

2.
3 Biotech ; 12(10): 254, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36065421

ABSTRACT

Wool has the tendency to turn into felt during agitation in washing machines. Thus, a benign non-polluting method for the production of machine-washable wool was developed herein. Initially, a proteolytic bacteria was isolated from hot region soil. The bacterial isolate was identified as Bacillus safensis FO-36bMZ836779 according to the 16S rRNA gene sequencing. Afterwards, the extracellular protease produced by this isolate was covalently immobilized in order to enhance its stability under non-ambient conditions which are usually adopted in industrial sectors like textile industries. Sericin, which is usually discharged into degumming effluent of natural silk, was utilized to prepare the immobilization carrier. Box-Behnken design was adopted in order to hone the preparation of the sericin-polyethylene-imine-glutaraldehyde activated agar carrier. The pH and temperature profiles of the free and immobilized proteases were compared. Later, wool fibres were bio-treated with both the free and the immobilized enzymes. The effect of process conditions on the resistance of the bio-finished wool to felting was investigated. The alteration in the fibre morphology was monitored using SEM. Amino acid analysis and alkali solubility tests were adopted to assign any change in the chemical structure of the bio-treated wool. The influence of bio-treatment of wool on its inherent properties was assigned. Results revealed that bio-treatment of wool with the said enzyme led to production of machine-washable wool without severe deterioration in the fibres' properties. In an energy- and water-consuming process, the hot solution from bio-treatment bath was used successfully in dyeing of wool. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03323-y.

3.
Int J Biol Macromol ; 194: 800-810, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34848239

ABSTRACT

The hydrophobic nature of wool induced by its surface lipid barrier hinders its wettability during processing. Scouring of wool is conducted to remove this lipid barrier and facilitate any wet processes. Scouring of wool is conducted using soda ash followed by rinsing with huge amount of water to ensure complete removal of alkali. This work aimed at utilization of thermophilic lipase enzyme for removal of wool surface lipid barrier without deterioration on the fibre interior. A thermally stable lipase enzyme was produced from thermophilic microorganism; namely Bacillus aryabhattai B8W22, and was utilized in bio-scouring of wool. The produced enzyme was immobilized on sericin-based discs to enhance its stability and to make it reusable. The activity of both free and immobilized lipase enzymes at different conditions was assessed. The effects of bio-scouring of wool on its dyeability with acid, basic, and reactive dyes, as well as on some of its inherent properties, were monitored. Results showed that the bio-scoured wool exhibits enhanced dyeability with the said classes of dyes more than that of conventionally scoured samples. One-bath scouring and dyeing of wool fibres in two successive steps was conducted to reduce consumption of water and energy during wet processing of wool.


Subject(s)
Enzymes, Immobilized , Lipase/chemistry , Wool Fiber/analysis , Wool/chemistry , Animals , Bacillus/classification , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Coloring Agents/chemistry , Enzyme Stability , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lipolysis , Molecular Structure , Temperature
4.
Pol J Microbiol ; 65(1): 43-50, 2016.
Article in English | MEDLINE | ID: mdl-27281993

ABSTRACT

Gamma irradiation is used on Penicillium cyclopium in order to obtain mutant cells of high L-asparaginase productivity. Using gamma irradiation dose of 4 KGy, P. cyclopium cells yielded L-asparaginase with extracellular enzyme activity of 210.8 ± 3 U/ml, and specific activity of 752.5 ± 1.5 U/mg protein, which are 1.75 and 1.53 times, respectively, the activity of the wild strain. The enzyme was partially purified by 40-60% acetone precipitation. L-asparaginase was immobilized onto Amberlite IR-120 by ionic binding. Both free and immobilized enzymes exhibited maximum activity at pH 8 and 40 degrees C. The immobilization process improved the enzyme thermal stability significantly. The immobilized enzyme remained 100% active at temperatures up to 60 degrees C, while the free asparaginase was less tolerant to high temperatures. The immobilized enzyme was more stable at pH 9.0 for 50 min, retaining 70% of its relative activity. The maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) of the free form were significantly changed after immobilization. The K(m) value for immobilized L-asparaginase was about 1.3 times higher than that of free enzyme. The ions K+, Ba2+ and Na+ showed stimulatory effect on enzyme activity with percentages of 110%, 109% and 106% respectively.


Subject(s)
Asparaginase/metabolism , Gene Expression Regulation, Enzymologic/radiation effects , Gene Expression Regulation, Fungal/radiation effects , Penicillium/enzymology , Penicillium/radiation effects , Asparaginase/genetics , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Kinetics , Metals , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...